Open Close Button
조직도

조직 및 부서별 검색

조직도 상세보기

[한국지방행정연구원] 스마트지방행정연구센터

소개 - 데이터 기반 지방행정혁신 체계 구축
- 데이터 기반 지방행정 역량 강화를 위한 연구 및 컨설팅 수행
대표 이재용 센터장
대표전화 033-769-9851
대표팩스

이원도(겸임)

직위 연락처 E-mail
부연구위원 033-769-9854 e-mail
학력/전공/경력
  • <학력>
    ∙경희대학교 지리학과 학·석·박사 (연도제거)

    <전공>
    · 교통지리학, 공간통계 및 GIS

    <경력>
    ∙경기도 인구정책조정위원회 위원 (2023.03.28 ~ 2025.03.27.)
    ∙인천광역시 미래준비특별위원회 위원 (2023.06.16 ~ 2024.06.15.)
    ∙Transport Studies Unit, University of Oxford (Researech Associate in Urban Mobility, 2019. 12 ~ 2022. 01)
    ∙Crime and Well-being Big data Centre, Manchester Metropolitan University (Research Associate, 2016. 10 ~ 2019. 11)
    ∙아주대학교 TOD기반 지속가능도시교통연구센터 (연구원, 2015. 03 ~ 2016. 07)
    ∙IMOB, Hasselt University (Visiting researcher, 2015. 02 ~ 2016. 07)
    ∙경희대학교 지리학과 시공간 빅 데이터 융합 전문가 양성 사업단 (객원교수, 2014. 09 ~ 2015. 02)
논문 및 저서
  • <논문>
    · Lee, S.-Y., Hwang, T., Lee, W. Do., Hwang, C.-S. (2023). Measuring Spatial Associations of Intercity Flows between Depopulation Regions Considering Nearest Neighbourhoods. Journal of the Korean Geographical Society, 58(6), 644-656. https://doi.org/10.22776/kgs.2023.58.6.644 (in Korean)
    ·Kang, J.-Y., Kim, M., Lee, W. Do. (2023). ChatGPT and Bard: The potential of Generative AI tools for Reviving South Korea's Shrinking Regions. The Geographical Journal of Korea, 57(4), 477-490. https://doi.org/10.22905/kaopqj.2023.57.4.9 (in Korean)
    ∙ Lee, W. Do, Yoo, S., & Kim, Y.-L. (2023). Unveiling Variation in Regional Vitality over Time for Tackling Population Decline in South Korea. The Korea Local Administration Review, 37(1), 251–280. https://doi.org/10.22783/krila.2023.37.1.251 (in Korean)
    ∙ Lee, W. Do, Yoon, S., & Kang, J.-Y. (2022). Reproducible and Replicable Digital Dashboard for Navigating Regional Vibrancy. Journal of the Korean Cartographic Association, 22(3), 89–100. https://doi.org/10.16879/jkca.2022.22.3.089 (in Korean)
    ∙Lee, W. Do, Schulte, K., & Schwanen, T. (2022). An Online Interactive Dashboard to Explore Personal Exposure to Air Pollution. Findings. https://doi.org/10.32866/001c.49875
    ∙Lee, W. D. (2022). Geoprivacy-Preserving Publication of Mobility Data. Journal of Korean Society of Transportation, 40(5), 643–655. https://doi.org/10.7470/jkst.2022.40.5.643 (in Korean)
    ∙Lee, W. Do, Qian, M., & Schwanen, T. (2021). The association between socioeconomic status and mobility reductions in the early stage of England’s COVID-19 epidemic. Health & Place, 69, 102563. https://doi.org/10.1016/j.healthplace.2021.102563
    ∙Ellison, M., Bannister, J., Lee, W. Do, & Haleem, M. S. (2021). Understanding policing demand and deployment through the lens of the city and with the application of big data. Urban Studies, 58(15), 3157–3175. https://doi.org/10.1177/0042098020981007
    ∙Lee, W. Do, Haleem, M. S., Ellison, M., & Bannister, J. (2021). The Influence of Intra-Daily Activities and Settings upon Weekday Violent Crime in Public Spaces in Manchester, UK. European Journal on Criminal Policy and Research, 27(3), 375–395. https://doi.org/10.1007/s10610-020-09456-1
    ∙Haleem, M. S., Lee, W. Do, Ellison, M., & Bannister, J. (2021). The ‘Exposed’ Population, Violent Crime in Public Space and the Night-time Economy in Manchester, UK. European Journal on Criminal Policy and Research, 27(3), 335–352. https://doi.org/10.1007/s10610-020-09452-5
    ∙Ectors, W., Reumers, S., Lee, W. Do, Kochan, B., Janssens, D., Bellemans, T., & Wets, G. (2020). Optimizing copious activity type classes based on classification accuracy and entropy retention. Future Generation Computer Systems, 110, 338–349. https://doi.org/10.1016/j.future.2018.04.080
    ∙Lee, W. Do, Ectors, W., Bellemans, T., Kochan, B., Janssens, D., Wets, G., Choi, K., & Joh, C.-H. (2018). Investigating pedestrian walkability using a multitude of Seoul data sources. Transportmetrica B: Transport Dynamics, 6(1), 54–73. https://doi.org/10.1080/21680566.2017.1325783
    ∙Ectors, W., Reumers, S., Lee, W. Do, Choi, K., Kochan, B., Janssens, D., Bellemans, T., & Wets, G. (2017). Developing an optimised activity type annotation method based on classification accuracy and entropy indices. Transportmetrica A: Transport Science, 13(8), 742–766. https://doi.org/10.1080/23249935.2017.1331275
    ∙Hwang, J. H., Kim, H., Cho, S., Bellemans, T., Lee, W. Do, Choi, K., Cheon, S. H., & Joh, C.-H. (2017). An examination of the accuracy of an activity-based travel simulation against smartcard and navigation device data. Travel Behaviour and Society, 7, 34–42. https://doi.org/10.1016/j.tbs.2017.01.001
    ∙Lee W. Do. (2014). Spatial Analysis of Simulated Activity-Travel Behaviors in Seoul Metropolitan Area: An Application of Activity-Based Simulator FEATHERS Seoul. Kyung Hee University.

    <저서>
    ∙Lee, W. Do, Joh, C.-H., Cho, S., & Kochan, B. (2014). Issues in Feathers Application in the Seoul Metropolitan Area. In D. Janssens, A.-U.-H. Yasar, & L. Knapen (Eds.), Data Science and Simulation in Transportation Research (pp. 71–85). IGI Global. https://doi.org/10.4018/978-1-4666-4920-0.ch004
    ∙빈미영, 문주백, 조창현, 이원도, 원종서, 박운호. (2012). 경기도 지역별 교통형평성 분석: 인프라와 통행행태의 통합적 분석 (정책연구 2012-62). 경기개발연구원.
목록